9 research outputs found

    Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals

    Get PDF
    Dictionary Learning has proven to be a powerful tool for many image processing tasks, where atoms are typically defined on small image patches. As a drawback, the dictionary only encodes basic structures. In addition, this approach treats patches of different locations in one single set, which means a loss of information when features are well-aligned across signals. This is the case, for instance, in multi-trial magneto- or electroencephalography (M/EEG). Learning the dictionary on the entire signals could make use of the alignement and reveal higher-level features. In this case, however, small missalignements or phase variations of features would not be compensated for. In this paper, we propose an extension to the common dictionary learning framework to overcome these limitations by allowing atoms to adapt their position across signals. The method is validated on simulated and real neuroelectric data.Comment: 9 pages, 5 figures, minor correction

    Dictionary learning for M/EEG multidimensional data

    Get PDF
    International audienceSignals obtained from magneto- or electroencephalography (M/EEG) are very noisy and inherently multi-dimensional, i.e. provide a vector of measurements at each single time instant. To cope with noise, researchers traditionally acquire measurements over multiple repetitions (trials) and average them to classify various patterns of activity. This is not optimal because of trial-to-trial variability (waveform variation, jitters). The jitter-adaptivedictionary learning method (JADL) has been developed to better handle for this variability (with a particular emphasis on jitters). JADL is a data-driven method that learns a dictionary (prototype pieces) from a set of signals, but is currently limited to a single channel, which restricts its capacity to work with very noisy data such as M/EEG. We propose an extension to the jitter-adaptive dictionary learning method, that is able to handle multidimensional measurements such as M/EEG

    Modeling the variability of electrical activity in the brain

    No full text
    Cette thèse explore l'analyse de l'activité électrique du cerveau. Un défi important de ces signaux est leur grande variabilité à travers différents essais et/ou différents sujets. Nous proposons une nouvelle méthode appelée "adaptive waveform learning" (AWL). Cette méthode est suffisamment générale pour permettre la prise en compte de la variabilité empiriquement rencontrée dans les signaux neuroélectriques, mais peut être spécialisée afin de prévenir l'overfitting du bruit. La première partie de ce travail donne une introduction sur l'électrophysiologie du cerveau, présente les modalités d'enregistrement fréquemment utilisées et décrit l'état de l'art du traitement de signal neuroélectrique. La principale contribution de cette thèse consiste en 3 chapitres introduisant et évaluant la méthode AWL. Nous proposons d'abord un modèle de décomposition de signal général qui inclut explicitement différentes formes de variabilité entre les composantes de signal. Ce modèle est ensuite spécialisé pour deux applications concrètes: le traitement d'une série d'essais expérimentaux segmentés et l'apprentissage de structures répétées dans un seul signal. Deux algorithmes sont développés pour résoudre ces problèmes de décomposition. Leur implémentation efficace basée sur des techniques de minimisation alternée et de codage parcimonieux permet le traitement de grands jeux de données.Les algorithmes proposés sont évalués sur des données synthétiques et réelles contenant des pointes épileptiformes. Leurs performances sont comparées à celles de la PCA, l'ICA, et du template-matching pour la détection de pointe.This thesis investigates the analysis of brain electrical activity. An important challenge is the presence of large variability in neuroelectrical recordings, both across different subjects and within a single subject, for example, across experimental trials. We propose a new method called adaptive waveform learning (AWL). It is general enough to include all types of relevant variability empirically found in neuroelectric recordings, but can be specialized for different concrete settings to prevent from overfitting irrelevant structures in the data. The first part of this work gives an introduction into the electrophysiology of the brain, presents frequently used recording modalities, and describes state-of-the-art methods for neuroelectrical signal processing. The main contribution of this thesis consists in three chapters introducing and evaluating the AWL method. We first provide a general signal decomposition model that explicitly includes different forms of variability across signal components. This model is then specialized for two concrete applications: processing a set of segmented experimental trials and learning repeating structures across a single recorded signal. Two algorithms are developed to solve these models. Their efficient implementation based on alternate minimization and sparse coding techniques allows the processing of large datasets. The proposed algorithms are evaluated on both synthetic data and real data containing epileptiform spikes. Their performances are compared to those of PCA, ICA, and template matching for spike detection

    Modélisation de la variabilité de l'activité électrique dans le cerveau

    No full text
    This thesis investigates the analysis of brain electrical activity. An important challenge is the presence of large variability in neuroelectrical recordings, both across different subjects and within a single subject, for example, across experimental trials. We propose a new method called adaptive waveform learning (AWL). It is general enough to include all types of relevant variability empirically found in neuroelectric recordings, but can be specialized for different concrete settings to prevent from overfitting irrelevant structures in the data. The first part of this work gives an introduction into the electrophysiology of the brain, presents frequently used recording modalities, and describes state-of-the-art methods for neuroelectrical signal processing. The main contribution of this thesis consists in three chapters introducing and evaluating the AWL method. We first provide a general signal decomposition model that explicitly includes different forms of variability across signal components. This model is then specialized for two concrete applications: processing a set of segmented experimental trials and learning repeating structures across a single recorded signal. Two algorithms are developed to solve these models. Their efficient implementation based on alternate minimization and sparse coding techniques allows the processing of large datasets. The proposed algorithms are evaluated on both synthetic data and real data containing epileptiform spikes. Their performances are compared to those of PCA, ICA, and template matching for spike detection.Cette thèse explore l'analyse de l'activité électrique du cerveau. Un défi important de ces signaux est leur grande variabilité à travers différents essais et/ou différents sujets. Nous proposons une nouvelle méthode appelée "adaptive waveform learning" (AWL). Cette méthode est suffisamment générale pour permettre la prise en compte de la variabilité empiriquement rencontrée dans les signaux neuroélectriques, mais peut être spécialisée afin de prévenir l'overfitting du bruit. La première partie de ce travail donne une introduction sur l'électrophysiologie du cerveau, présente les modalités d'enregistrement fréquemment utilisées et décrit l'état de l'art du traitement de signal neuroélectrique. La principale contribution de cette thèse consiste en 3 chapitres introduisant et évaluant la méthode AWL. Nous proposons d'abord un modèle de décomposition de signal général qui inclut explicitement différentes formes de variabilité entre les composantes de signal. Ce modèle est ensuite spécialisé pour deux applications concrètes: le traitement d'une série d'essais expérimentaux segmentés et l'apprentissage de structures répétées dans un seul signal. Deux algorithmes sont développés pour résoudre ces problèmes de décomposition. Leur implémentation efficace basée sur des techniques de minimisation alternée et de codage parcimonieux permet le traitement de grands jeux de données.Les algorithmes proposés sont évalués sur des données synthétiques et réelles contenant des pointes épileptiformes. Leurs performances sont comparées à celles de la PCA, l'ICA, et du template-matching pour la détection de pointe

    Dictionary Learning for Multidimensional Data

    Get PDF
    International audienceElectroencephalography(EEG) and magnetoencephalography (MEG) measure the electrical activity of the functioning brain usinga set of sensors placed on the scalp (electrodes and magnetometers). Magneto- or electroencephalography (M/EEG) have the same biological origin, the activity of the pyramidal neurones within the cortex. The signals obtained from M/EEG are very noisy and inherently multi-dimensional,i.e. provide a vector of measurements at each single time instant. To cope with the noise, researchers, traditionally acquire measurements overmultiple repetitions (trials) and average them to classify various patterns of activity. This is not optimal because of trial to trial variability. Thejitter-adaptive dictionary learning method (JADL) [1] has been developed to better handle for this variability. JADL is a data-based method thatlearns a dictionary from a set of signals, but is currently limited to a single channel, which restricts its capacity with very noisy data such asM/EEG. In this paper, we propose an extension to the jitter-adaptive dictionary learning method, in order to handle multidimensional measurements such as M/EEG. A modified model is developed and tested using synthetically generated data set as well as real M/EEG signals. The results obtained using our model look promising, and show superior performance compared to the original single-channel JADL framework

    Adaptive Waveform Learning: A Framework for Modeling Variability in Neurophysiological Signals

    Get PDF
    International audienceWhen analyzing brain activity such as local field potentials (LFP), it is often desired to represent neural events by stereotypic waveforms. Due to the non-deterministic nature of the neural responses, an adequate waveform estimate typically requires to record multiple repetitions of the neural events. It is common practice to segment the recorded signal into event-related epochs and calculate their average. This approach suffers from two major drawbacks: (i) epoching can be problematic, especially in the case of overlapping neural events and (ii) variability of the neural events across epochs (such as varying onset latencies) is not accounted for, which may lead to a distorted average. In this paper, we propose a novel method called adaptive waveform learning (AWL). It is designed to learn multi-component representations of neural events while explicitly capturing and compensating for waveform variability, such as changing latencies or more general shape variations. Thanks to its generality, it can be applied to both epoched (i.e., segmented) and continuous (i.e., non-epoched) signals by making the corresponding specializations to the algorithm. We evaluate AWL's performance and robustness to noise on simulated data and demonstrate its empirical utility on an electrophysiological recording containing intracranial epileptiform discharges (epileptic spikes)

    Electro-Metabolic Coupling Investigated with Jitter Invariant Dictionary Learning

    Get PDF
    International audienceThis work aims at establishing a relationship between neurophysiological and hemodynamic activity in an animal model of epilepsy. For the analysis, we propose a novel algorithm that is suited to learn meaningful representations of the multimodal datasets. As a result, we are able to learn a hemodynamic response and discover spike synchronization with hemodynamic activity

    Interneurons contribute to the hemodynamic/metabolic response to epileptiform discharges

    No full text
    International audienceInterpretation of hemodynamic responses in epilepsy is hampered by an incomplete understanding of the underlying neurovascular coupling, especially the contributions of excitation and inhibition. We made simultaneous multimodal recordings of local field potentials (LFPs), firing of individual neurons, blood flow, and oxygen level in the somatosensory cortex of anesthetized rats. Epileptiform discharges induced by bicuculline injections were used to trigger large local events. LFP and blood flow were robustly coupled, as were LFP and tissue oxygen. In a parametric linear model, LFP and the baseline activities of cerebral blood flow and tissue partial oxygen tension contributed significantly to blood flow and oxygen responses. In an analysis of recordings from 402 neurons, blood flow/tissue oxygen correlated with the discharge of putative interneurons but not of principal cells. Our results show that interneuron activity is important in the vascular and metabolic responses during epileptiform discharges
    corecore